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A Century of Portraits: A Visual Historical Record of
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Abstract—Imagery offers a rich description of our world and
communicates a volume and type of information that cannot be
captured by text alone. Since the invention of the camera, an ever-
increasing number of photographs document our “visual culture”
complementing historical texts. Currently, this treasure trove of
knowledge can only be analyzed manually by historians, and only
at small scale. In this paper, we perform automated analysis on a
large-scale historical image dataset. Our main contributions are:
1) A publicly available dataset of 168,055 (37,921 frontal-facing)
American high school yearbook portraits. 2) Weakly supervised
data-driven techniques to discover historical visual trends in fash-
ion and identify date-specific visual patterns. 3) A classifier to pre-
dict when a portrait was taken, with median error of 4 years for
women and 6 for men. 4) A new method for discovering and dis-
playing the visual elements used by the classifier to perform the
dating task, finding that they correspond to the tell-tale fashions of
each era.

Index Terms—Data mining, deep learning, image dating, histor-
ical data.

I. INTRODUCTION

IN THEIR quest to understand the past, historians—from
Herodotus to the present day—primarily rely on textual

records. However, some details are perceived as too mundane to
put down in writing or too difficult to accurately describe. For
example, it would be hard for a future historian to understand
what the term “hipster glasses” refers to, just as it is difficult for
us to imagine what “flapper galoshes” might look like from a
written description alone [2]. The invention of the daguerreo-
type in 1839 as a means of relatively cheap, automatic image
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Fig. 1. Average images of high school seniors by decade. The evolving fash-
ions and facial expression throughout the 20th century are evident in this simple
aggregation. For example, notice the increasing extent of smiles over the years
and the recent tendency for women to wear their hair long. In contrast, note that
the suit is the default dress code for men throughout.

capture heralded a new age of massive visual data creation with
potentially profound implications for historians. This new for-
mat was complementary to historical texts, as it could capture
those nuances and transmit non-verbal information that would
otherwise be lost.

The study of history often involves finding patterns in large
amounts of data. For written accounts, historians have begun to
use digital humanities techniques to automatically mine large
text corpora. For example, using text analysis of Google Books it
is possible to study a diverse set of topics such as word usage over
time and the histories of events like the Civil War or the spread
of influenza [3]. In contrast, despite the abundance of historical
visual data over the last century and a half, historians are still
limited by the speed of manual curation. There are perhaps
many unseen visual connections that are missed because tools
for large-scale visual data mining have yet to be introduced into
the field.

We take a new approach to the analysis of visual historical data
by introducing data-driven methods suited to mining large image
collections. Specifically, we apply these methods to discovering
the evolution in the appearance of people over time. We present a
collection of one type of widely available yet little used historical
visual data—a century’s worth of United States high school
yearbook portraits (Fig. 1). Yearbooks, an iconic American high
school staple, have been published since the wide adoption of
film (the first Kodak camera was released in 1888) and contain
standardized portrait photos of the graduating class. Yearbook
portraits provide a consistent visual format through which one
can examine changes in content from personal style choices to
developing social norms. In this paper, we present a large-scale
dataset of yearbook portraits spanning the entire 20th century,
and report on a number of experiments to analyze it.
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First, we mine the portrait data to discover trends over time
and date-specific visual patterns. We examine changes in so-
cial norms by studying the practice of smiling to the camera
and men’s changing hair styles during the social changes of the
1960s. Additionally, we discover that fluctuations in the pop-
ularity of eyewear is correlated with advances in contact lens
technology. Finally, we mine for the quintessential “look” of
each decade by employing a technique of discriminative clus-
tering. Our data-driven results are consistent with existing his-
torical records of the fashion trends in hair, makeup and eyewear
from the 20th century.

Second, we use the time-correlated visual variability in the
portraits to predict, from an image of a face alone, when the
photograph was taken. Using a convolutional neural network
(CNN) trained on our dataset, we are able to date yearbook
portraits within a median error of four years of their true date.
We further demonstrate some generalization to an unseen dataset
of historical celebrity portraits despite the large differences in
appearance between high school students and adult actresses
and models.

Finally, while CNN classifiers have proven to be the leading
tool for many image domains, it remains challenging to tell
why a specific classification decision has been made. This is
particularly important for tasks like dating where the labels are
weak, the visual space is huge, and much of the visual data
might be irrelevant to the task. We propose a method to discover
which parts of the image were most useful for pinpointing the
date in which it was taken. At the core of our approach lies the
insight that we can disable parts of the network without altering
the dating decision.

The main contributions of this paper are: 1) A publicly-
available historical image dataset that comprises a large-scale
collection of yearbook portraiture from the last 120 years in
the United States. 2) Data-driven methods to discover historical
visual patterns in fashion and social norms. 3) A CNN classifier
to predict the date in which a portrait was taken, with median
error of 4 years for women and 6 for men. 4) A method for
visualizing the time-specific elements used by the CNN to date
the portraits.

II. RELATED WORK

1) Historical Data Analysis: Researchers in the humanities
tease out historical information from ever larger text corpora
thanks to advances in natural language processing and infor-
mation retrieval. For example, these advances (together with
the availability of large-scale storage and OCR technology) en-
abled Michel et al. [3] to conduct a thorough study of about 4%
of all books ever printed resulting in a quantitative analysis of
cultural and linguistic trends.

To date, the automated analysis of historical images has been
relatively limited. Some examples include modeling the evo-
lution of automobile design [4] and architecture [5] as well as
image dating–determining the date when historical color pho-
tographs were taken [6], [7]. Here we extend upon these works
by presenting a yearbook dataset that we use to answer a broader
set of questions. Concurrent and independent of our work, [8]
also proposed using yearbook data for image dating but focused
on yearbooks from two counties in Missouri. Our work differs

Fig. 2. The distribution of portraits per year and region. Our dataset is unique
in that it is diverse in terms of both geographic location and time coverage.

in that we mine for various patterns in yearbook data beyond
date prediction. Moreover, our dataset is unique as it a broader
sample of locations across the United States as well as constant
coverage over time (see Fig. 2).

2) Modeling Style: Recently several researchers began
modeling fashion. In HipsterWars, Kiapour et al. [9] take a
supervised approach and use an online game to crowd-source
human annotations that are then used to train models for style
classification. Hidayati et al. [10] take a weakly-supervised
approach to discover the recent (2010–2014) trends in the New
York City fashion week catwalk shows. They extract color and
texture features and use these to discover the representative
visual style elements of each season via discriminative cluster-
ing [11]. While we also deal with fashion and style in this paper,
our focus is on changes in style through a much longer period.
Because our dataset includes scanned images from earlier time
periods, much of it consists of grayscale photographs and of
lower resolution than the recent datasets described above. This
makes some of the above approaches such as the usage of color
and texture features unsuitable for our data.

3) Deep Neural Networks: Of the many CNN architectures
designed in recent years, the VGG [12] network is one of the
best-performing and most versatile. It is designed as a deep net-
work of 16 convolutional layers with spatially-grouped feature
maps and two fully connected layers on top. The VGG model
trained on ILSVRC 2012 [13] has been able to generalize well
to various computer vision tasks with proper fine-tuning (further
training) on the target data and task. In this paper, we use VGG
for the task of portrait dating and visualize which image regions
it uses to make inference decisions.

4) Deep Neural Network Visualization: Several attempts have
been made to visually understand the inner-workings of deep
networks. One approach taken by [14]–[16] visualizes images
that produce a specific set of features in CNNs. Another ap-
proach aims to find input images that maximize the activation of
single units in the network [16], [17]. In the realm of faces, [18]
synthetically generate images that maximally activate individual
neurons. Unlike our method, these approaches do not explain
which spatial locations in an input image contribute to the clas-
sification.

Zeiler et al. [19] examine which parts of the image result in
the highest response of single spatial units by systematically
obstructing parts the image. They use deconvolutional networks
to invert the effect of pooling layers and reconstruct an approx-
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imation of the input pixels from the activations of intermediate
layers of the network. Unlike this approach, our method outputs
pixel locations rather than an approximation of the input. Fol-
lowing a similar approach, Zhou et al. [20] ask which segments
of an image are most responsible for a particular classification
decision. In contrast, we do not force our visual elements to be
enclosed in image regions, allowing us to discover ephemeral
visual structures beyond objects.

Most similar to our approach, Simonyan et al. [21] use the
network gradient propagated back to pixel space for a single in-
put image as an approximation of which spatial locations would
maximize the classification score if changed. This method dis-
covers the spatial locations that affect the class score for a canon-
ical image from this class and only reveals the general location
of the object in the image. In contrast, our approach takes into
account the unique path which the input image takes through
the network and therefore discovers which visual elements were
used by the CNN to classify this image. As a result, our method
focuses on localized areas that correspond to discriminative vi-
sual features.

III. THE YEARBOOK DATASET

We are at an auspicious moment for collecting historical year-
books as it has become standard in recent years for local libraries
to digitally scan their yearbook archives. This trend enabled us to
download publicly available yearbooks from various online re-
sources such as the Internet Archive and numerous local library
websites. We collected 949 scanned yearbooks from American
high schools ranging from 1905–2013 across 128 schools in
27 states. These contain 168,055 individual senior-class por-
trait photographs in total along with many more underclassmen
portraits that were not used in this project. After removing all
non-frontal facing we were left with a dataset of 37,921 pho-
tographs that depict individuals from 814 yearbooks across 115
high schools in 26 states.

On average, 28.8 faces are included in the dataset from each
yearbook with an average of 329 faces per school across all
years. The distribution of photographs over year and region is
depicted in Fig. 2. Overall, 46.4% of the photos come from the
100 largest cities according to US census [22].

Let us consider the potential biases in our data sample as
compared to the high school age population of the United States.
Since 1902 America’s high schools have followed a standard
format in terms of the population they served [23]. Yet, this does
not mean that the population of high school students has always
been an unbiased sample of the US youth population. In the early
1900s, less than 10% of all American 18-year-olds graduated
from high school, but by end of the 1960s graduation rates
increased to almost 50% [23]. Moreover, the standardization of
high schools in the United States left out most of the African
American population, especially in the South, until the middle
of the 20th century [24].

In our dataset 53.4% of the photos are of women, and 46.6%
are of men. As the true gender proportion in the population is
only available in a census year we are unsure if this is a bias in
our data. However, the gender imbalance may be due to the fact
that historically girls are disproportionately more likely than
boys to attend high school through graduation [23].

In order to turn raw yearbooks into an image dataset we per-
formed several pre-processing operations. First, we manually
identified the scanned pages of senior-class portraits. After con-
verting these to grayscale for consistency across years, we auto-
matically detected and cropped faces. We then extracted facial
landmarks from each face and estimated its pose with respect to
the camera using the IntraFace system [25], [26]. This allowed
us to filter out images of students who were not facing forward.
Next, we aligned all faces to the mean shape using an affine
transform based on the computed facial landmarks. Finally, we
divided the photos into those depicting males and females us-
ing an SVM in the whitened HOG feature space [27], [28] and
resolved difficult cases (confidence score lower than 90%) by
crowdsourcing a gender classification task on Mechanical Turk.
Our final dataset consists of cropped portraits with year, state,
city, school and gender annotations.

IV. MINING THE VISUAL HISTORICAL RECORD

We demonstrate the use of our historical dataset in answering
questions of historical and social relevance.

A. Getting a Sense of Each Decade

The simplest visual-data summarization technique of facial
composites dates back to the 1870s and is attributed to Sir
Francis Galton [29]. Here we use this technique to organize the
portraits chronologically. Fig. 1 (first page) displays the pixel-
mean of images of male and female students for each decade
in our data. These average images showcase the main modes of
the popular fashions in each time period.

B. Capturing Trends Over Time

We capture changes in attributes that always occur in a portrait
(degrees of smiling) as well as in accessories or styles that are
present in only some of the population at a given time.

1) Smiling in Portraiture: A close observation of the decade
average images in Fig. 1 reveals a change over time in the facial
expression of portrait subjects. In particular, today we take for
granted that we are expected to smile when our picture is being
taken; however, smiling at the camera was not always the norm.
In this section we attempt to quantify this change.

In her paper, the historian Kotchemidova studied the appear-
ance of smiles in photographic portraits using the traditional
historical methods of analyzing sample images manually [30].
She reports that in the late 19th century people posing for pho-
tographs still followed the habits of painted portraiture sub-
jects. These included keeping a serious expression since a smile
was hard to maintain for as long as it took to paint a portrait.
Also, etiquette and beauty standards dictated that the mouth be
kept small – resulting in an instruction to “say prunes” (rather
than “cheese”) when photographed [30]. All of this changed
during the 20th century when amateur photography became
widespread. In fact, Kotchemidova suggests that it was the at-
tempt to associate photography with happy occasions like hol-
idays and travel that led the photographic monopoly, Kodak,
to educate the public through advertisements that the obvious
expression one should assume in a snapshot is a smile. This
multi-decade ad campaign was a great success. By World War
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Fig. 3. Smile intensity metric. Left: the lip curvature metric is the average of
the two marked angles. Right: women and men portraits sorted by increasing
lip curvature.

Fig. 4. Average lip curvature on BP4D data correlates with AU-12 labels
which correspond to a contraction of the mouth muscles. Error bars denote
standard deviation.

II, smiles were so widespread in portraiture that no one ques-
tioned whether photographs of the GIs sent to war should depict
them with a smile [30].

To verify the apparent trend in our average images and
Kotchemidova’s claims regarding the presence and extent of
smiles in portrait photographs in a data-driven way, we devised
a simple lip-curvature metric and applied it to our dataset. We
compute the lip curvature by taking the average of the two an-
gles indicated in Fig. 3 (Left) where the point that forms the
hypotenuse of the triangle is the midpoint between the bottom
of the top lip and the top of the bottom lip of the student. The
same facial keypoints were used here as in image alignment (see
Section III). Fig. 3 (Right) depicts a montage of students ordered
in ascending order of lip curvature value from left to right. Vi-
sually, the lip-curvature metric quantifies the smile intensities
in our data in a meaningful way.

We verify that our metric generalizes beyond yearbook
portraits by testing it on the BP4D-Spontaneous dataset that
contains images of participants showing various degrees of
facial expressions with ground truth labels of expression inten-
sity [31]. BP4D uses labels drawn from the Facial Action Coding
System, which is commonly used in facial expression analysis.
This system consists of Action Units (AU) that correspond to
the intensity of contraction of various facial muscles. Following
previous work done on smile intensity estimation [32], we com-
pared our smile intensity metric with the activation of AU12 (Lip
corner puller) as it corresponds to the contraction of muscles
that raise the corners of the mouth into a smile. A higher AU12
value represents a higher contraction of muscles around the
corner of the mouth, resulting in a larger smile. Fig. 4 displays

Fig. 5. Smiles increase over time, but on average, women smile more than
men, across all decades: Male and female average lip curvature by year with
one standard deviation error bars. Note the dip in smile intensity from the 50 s
to the 60 s, for which we did not find prior mention.

Fig. 6. Portraits with the closest smile to the mean of that period (10-year bins
from 1905 (left) to 2005 (right)). Note the increasing extent of smiles.

the average lip curvature for each value of AU12 for 3 male and
3 female subjects, corresponding to 2,500–3,000 samples for
each AU12 value (0–5). As the simple lip-curvature metric we
used correlates with increasing AU12 values on BP4D images,
it is a decent indicator for smile intensities beyond our Yearbook
dataset.

Using our verified lip-curvature metric we plot the average
smile intensities in our data over the past century in Fig. 5.
Corresponding montages of smile intensities over the years are
included in Fig. 6, where we picked the student with the smile
intensity closest to the average for each 10-year bucket from
1905 to 2005. These figures corroborate Kotchemidova’s the-
ory and demonstrate the rapid increase in the popularity and
intensity of smiles in portraiture from the 1900s to the 1950s, a
trend that still continues today; however, they also reveal another
trend—women consistently smile more than men on average.
This phenomenon has been discussed extensively in the litera-
ture (see the review in [33]), but until now required intensive
manual annotation in order to discover and analyze. For exam-
ple, in her 1982 article Ragan manually analyzed 1,296 high
school and university yearbooks and media files in order to re-
veal a similar result [34]. By use of a large historical dataset and
a simple smile-detector we arrived at the same conclusion with
a minimal amount of manual effort.

We note that smiles could also be detected using the expres-
sion recognition software from [26]. However, this software was
not publicly available at the time of our experiments.

2) Glasses: Measuring the degree of smiles is easy to apply
to each portrait in the collection since every subject exhibits
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Fig. 7. The use of glasses over time dips in correlation with advances in
contact lenses, but glasses are consistently more popular among men.

some degree of mouth curvature, albeit sometimes a negative
one. We now extend our study of trends to accessories and
fashions that are only worn by a fraction of the population and
that require a classification decision per portrait to determine
if the specific style or accessory is exhibited. We first study
the usage of glasses by taking advantage of a small set of an-
notated celebrity portraits from the PubFig dataset [35]. We
fine tune VGG [12], a deep classification system pre-trained on
ILSVRC [13], on the celebrity portraits that are marked as wear-
ing glasses. We then apply the trained classifier to our Yearbook
dataset to find persons wearing glasses in our data. In Fig. 7
we graph the fraction of the student population that is wear-
ing glasses for males and females over time. It is interesting to
note that glasses are more popular among male students, and
to observe that the dips in glasses popularity correlate with the
introduction of contact lenses.

3) Men’s Hairstyles post 1960: The final trend we study is
changes in men’s hairstyles since the social movements of the
1960s which brought about long hair styles and “afros”. Here
we could not find an existing annotated dataset with appropriate
annotations. We therefore segmented out the hair in each portrait
following [36] and determined whether the depicted person had
long hair or an afro by checking whether the segmentation map
consists of hair under the depicted person’s chin or high above
his face, respectively. (Note that this approach worked well on
our data due to the lack of facial hair among most high school
students). Unfortunately, due to the low resolution of some of
the portraits in our dataset the fully-automatic approach was not
accurate enough and extra manual filtering was required. Fig. 8
shows the fraction of the population with these hairstyles after
a manual process of removing false positives and adding some
false negatives to our classifications. We note that our findings
corroborate other sources [37], [38] which claim that the afro
hairstyle was predominantly popular from the late 1960s through
the late 1970s after which many individuals switched to a more
styled version of the natural hairdo.

C. Mining for Date-Specific Patterns

The average images of each decade from Fig. 1 show us the
main modes of the styles of each decade. However, in each time
period or even classroom not every one shares the same style. In

Fig. 8. The fraction of male students with an “afro” or long hair.

fact, we would expect to find several representative and visually
discriminative features for every decade. These are the things
that make us immediately recognize a particular style as “20s” or
“60 s”, for example, and allow humans to effortlessly guess the
decade in which a portrait was taken. They are also the things
that are usually hard to put into writing and require a visual
aid when describing; this makes them excellent candidates for
data-driven methods.

We find the most representative women’s styles in hair and
facial accessories for each decade using a discriminative mode
seeking algorithm [39] on yearbook portraits cropped to contain
only the face and hair. Since our portraits are aligned, we can
treat them as a whole rather than look for mid-level represen-
tative patches as has been done in previous work [11], [39].
The output of the discriminative mode seeking algorithm is a
set of detectors and their detected portraits that make up the
visual clusters for each decade. We sort these clusters according
to how discriminative they are, specifically, how many portraits
they contain in the top 20 detections from the target decade
versus other decades. In order to ensure a good visual coverage
of the target decade, we remove clusters that include in their
top 60 detections more than 6 portraits (10%) that were already
represented by a higher ranking cluster.

Fig. 9 displays the four most representative women’s hair and
eyeglass styles of each decade from the 1930s until the 2000s.
Each row corresponds to a visual cluster in that decade. The
left-most entry in the row is the cluster average, and to its right
we display the top 6 portrait detections of the discriminative
detector that created the cluster. We only display a single woman
from each graduating class in order to ensure that the affinity
within each cluster is not due to biases in the data that result
from the photographic or scanning artifacts of each physical
yearbook. Looking at Fig. 9, we get an immediate sense of the
attributes that make each decade’s style distinctive. For example,
the particular style of curly bangs of the 40 s or the “winged”
flip hairstyle of the 60 s [38]. Finding and categorizing these
manually would be painstaking work. With our large dataset
these attributes emerge from the data by using only the year-
label supervision.

V. DATING HISTORICAL IMAGES

In Section IV-C we found distinctive visual patterns that occur
in different decades. Here we ask whether there are enough
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Fig. 9. Discriminative clusters of high school girls’ styles from each decade of the 20th century. Each row corresponds to a single detector and the cluster of
its top 6 detections over the entire dataset. Only one girl per graduating class is shown in the top detections. The left-most entry in each row displays the cluster
average. Note that the clusters correspond to the quintessential hair and accessory styles of each decade. Notable examples according to the Encyclopedia of
Hair [38] are: The finger waves of the 30 s. The pin curls of the 40 s and 50 s. The bob, “winged” flip, bubble cut and signature glasses of the 60 s. The long hair,
afros and bouffants of the 70 s. The perms and bangs of the 80 s and 90 s and the straight long hair fashionable in the 2000s. These decade-specific fashions emerge
from the data in a weakly-supervised, data-driven process.

decade-specific visual patterns to be able to predict the year in
which a portrait of a face was taken. We refer to this task as the
portrait dating problem.

We extend the work of Palermo et al. [6] in dating color pho-
tographs to the realm of black and white portraiture photography
where we cannot rely on the changes in image color profiles over
time. We choose to train a deep neural network model for dating
portraits based on the recent success of such models for other
visual recognition tasks [12]. While the portrait dating problem
can be cast into a regression framework, a standard regression
formulation models the data with a Gaussian distribution, elim-
inating the possibility of multiple modes. We therefore choose
to model the problem as classification.

We pose the task of dating the portraits of female and male
students as an 83-way year-classification task between the years
1928 and 2010, the years for which we have more than 30 fe-
male and male images per year. Separate classifiers are trained
for each gender to discourage the model from using low-level
image artifacts as a discriminatory signal. The models trained
on women and men are referred to as the women’s model

and men’s model respectively. We evaluate our model on a
subset of images drawn from the Yearbook dataset, the Year-
book test set, which is also divided by gender. To assess the
generalization capability of our dating model, we conduct ex-
periments including testing the model on yearbook photos of
the opposite gender, evaluating the model on a small set of
celebrity photos, and training a classifier on random background
crops.

1) Dating Yearbook Portraits: Our date-prediction model is
based on the VGG-16 model [12] that was pre-trained on the
ILSVRC benchmark image classification task [13]. The network
implementation and training procedure are detailed at the end
of this section. In Table I, we present results for two network
models and a baseline:

1) Partial FT: freeze the weights of all convolutional layers
and train only the fully connected layers and final classi-
fication layer of the network.

2) Full FT: fine-tune all layers of the network.
3) Chance: a baseline defined as the inverse of the number

of classes.



GINOSAR et al.: CENTURY OF PORTRAITS: A VISUAL HISTORICAL RECORD OF AMERICAN HIGH SCHOOL YEARBOOKS 427

TABLE I
CLASSIFICATION ACCURACY AND L1 MEDIAN ERROR FOR THE YEARBOOK

MEN’S AND WOMEN’S CLASSIFICATION MODELS ON THE TASK OF 83-WAY

YEAR CLASSIFICATION BETWEEN YEARS 1928–2010

Accuracy [%] L1 Med Error [yrs]

Model Test Other Celeb Test Other Celeb

Women Chance 1.2 1.2 1.2 – – –
Partial FT 8.1 3.4 0 5 11 27
Full FT 10.9 4.0 5.2 4 8 17

Men Chance 1.2 1.2 1.2 – – –
Partial FT 4.8 3.2 0 6 10 20
Full FT 5.5 3.7 0 6 10 20

“Test” refers to the test set of the same gender, “Other” refers to the test set of the opposite
gender, “Celeb” refers to the celebrity test set.

Fig. 10. Confusion matrix for the fully fine-tuned women’s model evaluated
on the Yearbook women test set, with each row normalized by the number of
images in that year. Darker off-diagonal regions indicate more confusion. The
mostly diagonal structure demonstrates that confusion mostly occurs between
neighboring years, indicating that the dating model can distinguish between
time periods.

Results for the Yearbook test set for each gender are shown
in column Test. Fine-tuning the full network on the Yearbook
data provides a performance boost over partial fine-tuning, in-
dicating that the convolutional filters in the lower layers can be
effectively tuned to Yearbook-specific features. Quantitatively,
65.3% of the women and 46.4% of the men test images are
classified within 5 years of the true year. To investigate the large
gap in performance between the men’s and women’s models,
we trained models for both genders on the easier problem of
10-way “decade” classification. This classifier achieves 61.0%
accuracy when trained on the women’s data, but only 44.3%
when trained on the men’s data. We conclude that there is sim-
ply less discriminative signal present in the images of men, and
hypothesize that men’s appearances change less over time, re-
sulting in few time-specific semantic features. For example, the
average images in Fig. 1 demonstrate that sporting short hair
and a suit was the default fashion choice across all decades.

For the women’s model, full fine-tuning improves the L1
median error in addition to the accuracy on the women’s test set.
Furthermore, the confusion matrix visualized in Fig. 10 reveals
that the predictions are rarely far off the mark. The diagonal

structure indicates that most of the confusion occurs between
neighboring years, matching our intuition that visual trends such
as hairstyle transcend the single-year boundary.

2) Generalization: The success in dating yearbook portraits
may be misleading since there are biases in the Yearbook dataset
that the network can exploit, such as similar backgrounds and
low-level image statistics. To determine the potential usefulness
of such low-level cues, we train a classification model on 32
by 32 pixel crops of portrait background (crops are taken from
the corners of each image in the Yearbook women training set).
This model achieves 2.8% accuracy, and 24.1% accuracy within
five years. Such poor performance demonstrates that low-level
image statistics and portrait backgrounds are not sufficient to
date the portraits.

To further test the generalization power of our portrait dat-
ing model, we test it on two different datasets not seen dur-
ing training. First, we test each model on the yearbook photos
of the opposite gender than those with which the model was
trained. High performance across genders would indicate that
the model leverages low-level statistics common across all the
yearbook photos. Second, we test each model on the celebrity
test set—a small set of 100 gray-scale head shots of celebri-
ties (58 female, 42 male), annotated with year labels, that we
cropped and aligned to the Yearbook images. High performance
across students and celebrities would indicate that the model
uses higher-level cues such as hairstyle to perform the dating
task. The results for these two generalization experiments are
presented in Table I, in columns Other and Celeb respectively.

For both the men’s and women’s models, performance on the
yearbook photos of opposite gender is substantially worse than
for the gender on which the model was trained, thus low-level
image statistics cannot account for the success of the dating
model. The fully fine-tuned women’s model greatly improves
performance on the celebrity test set compared to the baselines,
suggesting that generalizable features are learned from the Year-
book data.

The performance gap between the Yearbook test photos and
the celebrities for both models indicates that some cues used
by the model are yearbook-specific. This reduced performance
may be due to the domain shift between portraits of high school
students and celebrity glamour shots; celebrity hairstyles can
be quite different than those of the general public. Additionally,
our celebrity test set may simply be too small to serve as an
informative test set. However, while dating does not generalize
well for all celebrities, approximately 40% of the L1 errors on
female celebrities are less than a decade and most predictions
are within two decades of the ground truth year. Fig. 11 displays
individual good predictions.

3) Implementation Details: For the dating task, we use por-
traits that were cropped to the face and hair alone. The Year-
book test set consists of approximately 30% of the portraits
taken between 1982 and 2010: 4,227 women and 4,489 men.
The remaining 80% of images are used for training and vali-
dation: 15,370 women and 13,184 men. To minimize training
biases due to photographic and scanning artifacts, we separate
test and training images drawn from the same school by at least
a decade. To further minimize these biases, we use the built-in
Photoshop noise reduction filter on all the Yearbook images and
resize them to 96 by 96 pixels. In all of our experiments, we
use the Caffe [40] framework for training deep learning models.
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Fig. 11. The dating model generalizes somewhat to celebrity glamour shots, a significant domain shift from the yearbook photos on which the model was trained.
Shown are good celebrity dating predictions. Red indicates the ground truth year, blue indicates the prediction distribution. (a) Ground truth year: 1953. Predicted
1953. (b) Ground truth year: 1989. Predicted 1987. (c) Ground truth year: 1999. Predicted 2001.

For the classification model, we use the VGG network architec-
ture [12] that was pre-trained on the ILSVRC benchmark image
classification task [13]. We resize the fully connected layers to
accommodate 96px inputs, and add an 83-output classification
layer followed by a softmax cross-entropy loss. All networks
are trained for 5K iterations of mini-batch size 64 with horizon-
tal mirroring data augmentation, using SGD with learning rate
0.001, momentum 0.9, and weight decay 5e-4.1

VI. WHAT TIME SPECIFIC PATTERNS IS THE CLASSIFIER USING

FOR DATING?

In Section V we demonstrated that it is possible to train a
classifier to guess the date in which a portrait was taken. But
what is the classifier doing? What time-specific visual features
is it picking up on? In this section we visualize which pixels are
responsible for a given dating decision. The latent representa-
tions at the intermediate layers of a feed-forward convolutional
neural network f are grouped into spatial locations, such that
several features are activated at each spatial location in differ-
ent feature channels. While the ensemble of hidden activations
learns a large, distributed code for the training data, it is never
used in its entirety to represent a single input – different in-
puts take different paths through the network during inference.
Therefore, for a single input we can safely disable the spatial
locations throughout the network that are not part of the path
for this specific input while keeping the same output. This pro-
cess of removing unused locations that do not participate in the
computation of a particular y = f(x) allows us to visualize the
parts of the input image that do. Next we present an algorithm
that implements this process.

4) Top-Down Selection of Spatial Units: Our goal is to ask
‘What parts of the image were used to make this decision?’.
We therefore would like to maintain the same output distribu-
tion while removing unnecessary units. Given an input x we
compute its resulting probabilistic output y = f(x) by running
a forward pass over the network. Here the output y is a vec-
tor with n entries corresponding to n years, where each entry
contains the probability that a given photograph is from a given
year. We then run a single top-down optimization pass where
we disable units in spatial locations that are not needed to pro-
duce the probability distribution y. Since our goal is to main-
tain the same output distribution, we use the KL divergence,
a distance measure between two distributions, as our objective
function. Specifically, we define the objective to be the KL di-
vergence DK L (y||ŷl) of the predicted output ŷl after spatial unit

1Code to reproduce our results is available at https://github.com/katerakelly/
yearbook-dating

removal at layer l from the true final output distribution of the
network y:

DK L (y||ŷl) =
∑

c

(
yc log

yc

ŷlc

)
, (1)

where c refers to a single entry in the probabilistic output of the
CNN (or a single class).

We minimize the KL divergence via the following optimiza-
tion that forces the network to keep only a sparse set of active
units, while maintaining the same output distribution:

minimize
Ml ∈{0,1}N

DK L (y||ŷl)

subject to ‖Ml‖0 ≤ slN. (2)

Where Ml is a 2D binary mask that disables spatial units at
the input to layer l where its elements are 0, and sl is the
desired sparsity percentage over the N spatial units in layer
l. For simplicity, we use the same fixed sparsity percentage
throughout all layers.

To perform the above optimization we use a greedy algo-
rithm that traverses the network once from top to bottom and
minimizes the objective with respect to the constraint at every
layer. For each layer, we iterate over all spatial locations of its
input feature map and output a binary mask Ml which removes
all spatial units that are not necessary for computing the output
distribution y. We jointly disable all features grouped at a single
spatial location (all channels for a single location). Note that
when M does not remove any spatial locations this objective is
minimized but the sparsity constraint is violated. We therefore
start from a full mask M of all 1’s for each layer and remove
(zero out) those locations whose removal increases the value of
the objective as little as possible. This approach is similar to
Orthogonal Matching Pursuit [41], although there the objective
is usually a Euclidean distance. For a detailed description, refer
to Algorithm 1.

5) Gradient Approximation: The iterative greedy algorithm
of removing one spatial location at a time at each layer is too
slow to run in practice for lower-level layers of the CNN since
it iterates over all spatial locations of the feature map for every
spatial unit it disables. To make the optimization faster we first
present an alternative interpretation of Algorithm 1 and then
show how to approximate the expected change in loss for any
unit using a single backward pass through the network.

At each step of Algorithm 1 we find a spatial single unit i,
which when set to 0 increases the loss the least. This increase in
loss can be measured as follows:

di = DK L (y||ŷl
′) − DK L (y||ŷl), (3)
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Algorithm 1: Greedy top-down selection of spatial units.
1: for each layer l do
2: Start from a mask Ml of all 1s
3: while number of active spatial units > slN do
4: for each spatial location i do
5: Zero out i in layer l
6: Run a forward pass from l, zeroing locations in

higher layers h that were previously disabled
7: Compute predicted output ŷl and loss DK L (y||ŷl)
8: end for
9: Zero out the spatial location with the smallest

increase in the loss function: DK L (y||ŷl)
10: end while
11: end for

where ŷl and ŷl
′ are at a single spatial location i that is zeroed

out in ŷl
′. (3) can be thought of as a finite-difference approx-

imation with di = zl,i
∂

∂zl , i
DK L (y||ŷl) (though the difference

here may be large), and can thus be approximated by the prod-
uct of the gradient of the KL divergence objective function

∂
∂zl , i

DK L (y||ŷl) and the value of the input activations zl,i of
layer l. While this linear approximation is crude it works well
in practice and only requires a single backward pass through the
network, replacing lines 4–8 in Algorithm 1.

Note that when the two distributions, y and ŷl , are equal the
gradient of the objective is zero. In implementing this approxi-
mation we therefore reverse the direction of the optimization –
we start from a mask Ml of all 0’s (in line 2 of Algorithm 1) and
add the subset of spatial units that are necessary to maintain the
output distribution.

6) Experimental Setup: We run our spatial unit selection al-
gorithm on the dating classification network that we fine tuned
from the ILSVRC-trained VGG [12] as in Section V. The VGG
network consists of a deep stack of convolutional layers and
two fully-connected layers at the top. While the algorithm runs
out-of-the-box on VGG, the fully connected layers discard the
spatial component of their input feature maps that was main-
tained throughout the convolutional stack. We therefore modify
the network where, following Long et al. [42], we replace the
fully-connected layers with convolutional ones creating a fully
convolutional version of VGG. Unlike [42], we use 1 × 1 con-
volutions to replace all upper layers, reducing the parameters of
the model as well as the receptive field size of each unit. This
allows us to treat each image-pixel as an independent predic-
tor for image-class c. Since we do not have pixel-level ground
truth annotations for the image-level dating task, we take the fi-
nal image-level date prediction to be the average over all spatial
predictions. In our experiments we use a fixed sparsity sl = 20%
for all layers.

7) Quantitative Evaluation: Unfortunately, network visual-
ization papers have historically only provided qualitative eval-
uations of their results. A noteworthy exception is [43] who
propose a method based on region perturbation for evaluating
pixel relevance heatmaps. We provide a simpler quantitative
measure of the discriminativeness of the discovered regions by
testing how a pre-trained network could predict the year label
of Yearbook images only from the discovered elements. To this

Fig. 12. Discriminative regions for a 1940 portrait overlaid on the mean
training image. We compare our method to [21].

TABLE II
CLASSIFICATION ACCURACY AND ERRORS ON VISUAL ELEMENTS

Method Accuracy Avg L1 Error Med L1 Error

[21] 0.017 24.0 20.0
ours 0.033 18.1 11.0

end, we use a network that has been fine-tuned on the original
training data to classify the pixel-level discriminative regions
for different methods. For each test instance, we start with the
training-set mean image and add the color values of the discov-
ered regions (see Fig. 12). Table II shows the accuracy of our
approach compared with Simonyan et al. [21] on the resulting
images. As expected, our method achieves a higher classifica-
tion accuracy since it retains more discriminative elements.

8) Qualitative Evaluation:
The results of applying our spatial-unit selection algorithm

are shown in Fig. 13 and compared to the results of the Simonyan
et al. [21] method. Our algorithm extracts image parts that are
meaningful for dating such as 40’s and 50’s dark lipstick, 60’s
flat bangs, 80’s curls and 90’s hair partings. Referring back to
Fig. 9, we have verified that we can localize the visual elements
that resulted in these full image decade clusters. In comparison,
the Simonyan et al. method tends to pick out the center of
the object, here the forehead and nose of the depicted person,
which is less relevant for predicting the era of the photograph.
The images used here are all correctly predicted images from
the unseen set of female celebrity portraits.

VII. CONCLUSION

In this paper, we presented a large-scale historical image
dataset of yearbook portraits, which we have made publicly
available. These provide us with a unique opportunity to ob-
serve how fashions and habits change over time in a restricted,
fixed visual framework. We demonstrated the use of various
techniques for mining visual patterns and trends in the data that
significantly decrease the time and effort needed to arrive at
the type of conclusions often researched in the humanities. We
showed how deep learning techniques can leverage the time-
specific visual information in a single facial image to date por-
traits with great accuracy. Moreover, we presented a technique
to visualize which parts of the image are used in dating the
portraits thus finding the discriminative visual elements of each
time period.

Through the process of working with historical images we
often pushed the current state-of-the-art computer vision tech-
niques to their limits. While some automatic methods, such as
face detection, are robust enough for low resolution and low
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Fig. 13. The selected units most useful for dating. (a)–(f) Our results on celebrity portraits from different eras. (g) In comparison with column (f), [21] (run on
the same image) tends to focus on the middle of the object, the nose and forehead. Rows represent the selected spatial units in the inputs to layers pool5 (top) and
conv1 (bottom). While the unit selection process is a hard-selection, we shade the receptive field of each unit in the pool5 layer using a tent filter for displaying
purposes.

quality scans, there is much room for the improvement of other
methods that are often only tested on high quality imagery.
Some examples include automatic figure-ground and hair seg-
mentation methods, facial keypoint detection that captures the
full facial mask, 3D alignment of faces that respects hair and
accessories, accurate pose estimation and the detection of face
attributes and accessories such as long hair and jewelry. Finally,
our main challenge working with CNNs was ensuring that they
do not memorize semantically unimportant artifacts such as por-
trait backgrounds and noise.

Much remains to be done in the application of machine learn-
ing techniques to visual historical datasets, and in particular the
one at hand. For example, historical yearbook portraits can be
used to characterize the spread of styles over spatio-temporal
domains and the influence of celebrity styles on the public, to
discover the cycle-length of fashion fads and can be used as a
basis for data-driven style transfer algorithms. Ultimately, we
believe that data-driven methods applied to large-scale historical
image datasets can radically change the methodologies in which
visual cultural artifacts are employed in humanities research.
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